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1 Understanding of the problem

1.1 Microgrid Description

Micro-grids can be defined as ’Electricity distribution systems containing loads and distributed
energy resources, (such as distributed generators, storage devices, or controllable loads) that can
be operated in a controlled, coordinated way either while connected to the main power network
or while islanded.” The objective of the problem is to reduce the cost associated with running the
micro-grid, while meeting the power demand.

The model presented by Heymann et al [2] is used as a base reference.The micro-grid consists of
a number of units, like power generation unit, power storing unit, energy management unit, and
power consuming unit. For the problem addressed in this project, power is being generated by a
photo-voltaic power plant, a diesel generator and an external power source (EPS) (similar to a macro-
grid capable of providing continuous power supply). A battery energy storage system (BESS) is used
to store excess power being produced for later use. An energy management system coordinates
between all these units.

The cost of running the micro-grid is the sum of cost of diesel being consumed, startup cost for the
generator and cost of importing power from the EPS. We assume the unit cost of importing power
from the EPS is constant and also a negative cost is associated, if power is being exported to EPS.
Cost associated with photo-voltaic power plant is assumed to be zero. Also we assume that there are
no transmission losses in the grid. The solar power being generated cannot be controlled and is an
independent variable. The diesel generator has minimum and maximum power that it can produce.
The BESS has a limited capacity and power.

1.2 Problem Definition

The formulation of the optimal control problem builds upon the problem presented by Heymann
et al [2].The horizon is fixed at 7' = 48 hours. For ¢ € [0,77], , we denote the power supplied by the
solar panels as Ps(t), the power generated by the diesel generator as Pp(¢), the electricity load as
Pp(t), the power drawn from the EPS as Pg(t). The state of charge SOC(t) of the BESS is regulated by
the following equation:

1 Pol(t)
@(Pf(t)m* o ) @

where @ is the maximum capacity of the battery, P;, P, > 0 are the input and output power of the
BESS with corresponding efficiency ratios p;, po € [0, 1].

S0C(t) =

The power equilibrium is given by:

Pp+ Po+ Ps+ Pg— Pr, — Pr+ Pgaer =0 2)

The cost function is given by:

/T(KPD(f)O'g + CEPE(t))dt (3)
0

with K obtained from [1]. Additional constraints are as follows:

Po(t, Pp) = —min(0, Ps + Pp — Pr, + Psigcr + Pr)Pi(t, Pp) = max(0, Ps + Pp — Pr, + Pygck + Pe) (4)



SOC(t) € [0.2,1]
PD(t) € {O} U [szna Pmaw]

Pi(Pp(t),t) € [0,13.2] if SOC(t) < 0.9
Pr(Pp(t),t) <1320 % (SOC(t) — 1)? otherwise

Po(t) € [0,40]
The Optimal Control problem, where z(t) = SOC(¢) and u(t) = Pp(¢), can thus be stated as:

Minimize J[u] = [ (Ku(t)*® + ¢jPg)dt  from

s.t. z(t) = f(u(t),t)  from
u(t) € Uy from (6)
z(t) e C from

1.3 Problem Formulation

Based on the following assumptions, a few constraints have been relaxed:

&)

(6)

(7

(8)

()]

* No slack: assuming all the power is being used up and any lack of power is being fulfilled by

external power.

* Pp can take any value between 0 and P/**

* Battery cannot have input and output at the same time. This has been generalized as Pg; if Pp
is negative, the battery is discharging and charging if positive. The efficiency being included

accordingly in either cases.
* Upper bound on input battery power is taken to be independent of state of charge.
» Switching cost on diesel power is ignored.
* No constraint was applied on the final state of charge of battery.
Therefore the governing equations become:

soc() = 5(” (0.8 )

Pp+Ps+Pg—P,—Pg=0

abs(Pp(t))
Pp(t)

The cost function is given by:
T
/ (KPp(t)*° 4 cpPg(t))dt
0

Therefore, the new Optimal Control Problem can be stated as:

Minimize J[u] = [, (KPp(t)>® + cpPp(t))dt  from
s.t. z(t) = f(u(t),t)  from

u(t) € Uy from (6)

z(t) e C from

Pp(t) € [—40000, 13200]

Pp(t) >0

(10)

(11)

(12)

13)



2 Numerical Methods

Simulations were performed with the given data sets. Based on the data set, the predictability
of production of power from different sources, including the external power sources, using the
deterministic or stochastic modeling was determined. The following three methods were used to
approach the problem and obtaining the optimal solutions:

* Forward Euler Method
* Dynamic Programming Method

* Collocation Method

2.1 Direct Simultaneous Method with Forward Euler Scheme
2.1.1 Methodology

The solution of the differential equation at each time step ¢, is obtained sequentially using cur-
rent and previous information about the solution. The Forward Euler Method is a time-marching
multiple-step method, where the solution at time ¢, is obtained from a defined set of previous
values. It is one of the most common single-step methods and has a general form:

Tht1 = Tk + i fr 14)

where f;, = f(z(tx), u(ty), tx) This is an explicit method (because the value x(¢;,) does not appear
on the right-hand side of (14). The solution is less stable than that obtained from implicit methods
like Backward Euler or Crank-Nicolson, but it requires lesser computation at each step.

To implement this method, we converted the problem into Meyer form with derivative of cost as
one of the state. The other state was state of charge of battery and control were diesel power and
external power. Battery power was assigned as a intermediate variable.

2.1.2 Results

The optimal cost that was obtained from the Forward Euler scheme is 1.4087e+06, the states and
controls are as follows:
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Figure 2: Control Variable (Pp) vs Time

2.2 Dynamic Programming Method

In order to solve the DPP, we propose a semi-Lagrangian scheme. In addition, the Pontryagin
Maximum Principle (PMP) can be used to give additional information on the optimal solution, which
allows reducing the computational effort of the method significantly.

2.2.1 Brief Presentation of the Theory

Let V (¢, z0) denote the value of problem (OCP) with initial time t and initial condition z,. In R. Bell-
man’s words, “An optimal policy has the property that whatever the initial state and initial decision



are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.” In mathematical terms, V satisfies for » € (0,7 — ¢):

V(t,zo) = inf{ /Hh l(up)ds + V(t + h,x(t + h))} 15)

the infimum being taken over the set of admissible controls. In our framework, we will use an
extended version of the DPP approach that handles the switchings.

2.2.2 Semi-Lagrangian Scheme

The Semi-Lagrangian scheme consists of solving a discretization of over the space, backward
in time. We have chosen this scheme to solve the problem because it has good stability properties, it
allows large time steps and it is easy to implement. Let us motivate the scheme by first discretizing
in time. Given a time step 4 and N such that Nk = T, let us set ¢, = kh(k = 0,1,2,...... ,N).
Denoting by V;, the “approximated” value function at ¢, we have:

VE(x) = min{hi(v) + V" (x + hf(u, tr)} (16)
ueUy
The Semi-Lagrangian scheme is obtained from (16), by discretizing in space the state variable x
and introducing interpolation operators in order to approximate V*+!(x + hf(u,t;)) in terms of its
values in the space grid. The scheme is solved backward in time and, under standard conditions, it
is shown that it converges to the solution V of (I5).

2.2.3 The PMP Trick

The problem has an interesting property that greatly reduces the numerical computations. If «*
is the optimal control, z* be the optimal state and p* the Lagrange multiplier associated with the
dynamics constraint z(¢) = f(t,u(t)). Defining the Hamiltonian H (u,p,t) = pf(u,t) + [(u), the PMP
says that,

Hu*,p*,t*) > H(u,p*,t*) ¥V t€[0,T] and u € Uy a”n

Since v — H(u,p*,t*) is strictly concave piecewise, it can attain its minimum at only one of the
extreme points of the pieces. Also taking the constraints into account, we have at most five possible
optimal controls. Moreover, the values of those controls can be computed explicitly, since they do
not depend on p. Therefore, when doing the minimization in (I6), we can test only those controls
instead of discretizing the control space, gaining both in speed and precision.

We test the five cases:

1. Pp = P, = 0 (minimum power),

2. Pp = P4 = 12000 (maximum power),

3. Pp such that SOC = 0 (battery unused),

4. Pp such that Pg = 13.2 = Pj**, (maximal charge),
5. Pp such that P = —40 (maximal discharge)

It should be noted that the specific structure of the problem permits such computational simpli-
fication. More precisely, we use the fact that all the candidate values for the optimal control do not
depend on the adjoint state p and therefore can be evaluated and tested when computing the value
function. In the general case, the control that minimizes the Hamiltonian is expressed from both
the state and adjoint state, the latter being unavailable in the DPP approach (the adjoint actually
corresponds to the gradient, with respect to the state variable, of the value function V*).



While implementing this method, choices of control were limited to a discrete set of controls,
obtained from PMP. Controls were taken as diesel power and battery power, and their values limited
to the cases mentioned above. Minimum cost was calculated while back-stepping from the terminal
stage to the initial stage and finding the optimal path.

2.2.4 Results

The results that were obtained from applying the DP method to the problem are as follows:
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2.3 Collocation Method
2.3.1 Methodology

PROPT is a software package run on Matlab, intended to solve dynamic optimization problems. Such
problems are usually described by:

* A state-space model of a system. This can be either a set of ordinary differential equations
(ODE) or differential algebraic equations (DAE).

* Initial and/or final conditions (sometimes also conditions at other points).

» A cost functional, i.e. a scalar value that depends on the state trajectories and the control func-
tion.

» Additional equations and variables that, for example, relate the initial and final conditions to
each other.

PROPT uses pseudo-spectral collocation methods for solving optimal control problems. The solution
takes the form of a polynomial, and this polynomial satisfies the DAE and the path constraints at
the collocation points (Note that both the DAE and the path constraints can be violated between
collocation points). The default choice is to use Gauss points as collocation points, although the user
can specify any set of points to use.

The problem was converted into Meyer form. State of charge and derivative of cost were taken
as the state variables and diesel power and external power were taken as control. Both the states
and controls were discretized using collocation method. The problem was modeled, discretized and
optimized using Tomlab PROPT software.

2.3.2 Results

The optimal cost was found to be 1.3984e+06, and the controls and states are as follows:
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3 Conclusion

* Since there isno cost associated with solar power, it is always being used. The remaining power
is first supplied by diesel power and then by external power, as the unit cost for diesel power
is less than that of external power.

* All the three methods give approximately same minimum cost for one day’s operation.

* The computation time for all the methods were high though the Collocation method gave the
fastest results and the Euler method gave the slowest results. The optimization was done for
only a day’s data, as the computation for the month’s data would have taken a very long time.
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